
Cognitive Model Exploration and Optimization:

A New Challenge for Computational Science

L. Richard Moore Jr.

Lockheed Martin Systems Management
Air Force Research Laboratory

Warfighter Readiness Research Division
6030 South Kent Street

Mesa, Arizona 85212-6061
Larry.Moore@mesa.afmc.af.mil

Keywords:
adaptive mesh, exploration, searching, parameter space, predictive analytics,

volunteer computing, high performance computing

ABSTRACT: Parameter space exploration is a common problem tackled on large-scale computational resources.
The most common technique, a full combinatorial mesh, is robust but scales poorly to the computational demands of
complex models with higher dimensional spaces such as those found in the cognitive and behavioral modeling
community. To curtail the computational requirements, I have implemented two parallelized intelligent search and
exploration algorithms, both of which are discussed and compared in this paper.

1. Introduction

Research in cognitive science often involves the
generation and analysis of computational cognitive
models to explain various aspects of cognition. Typically
the behavior of these models various across a continuous
parameter space composed of a number of theoretically
motivated parameters, but most commonly we are left to
our own devices to find the right balance of parsimony
and fit within that space.

We are certainly not alone. The modeling community
more generally is already well aware of the challenges
associated with parameter optimization. Furthermore,
there appears to be a growing appreciation of the
parameter space itself—a qualitative understanding of the
space can provide valuable insights regarding a model’s
behavior, optimal parameter ranges, the number of
optima, and the distance(s) from canonical values. It is
this deep understanding of the model’s parameter space
that allows us to find a balance between parsimony,
optimization and generality (Gluck, Stanley, Moore,
Reitter & Halbrügge, 2010). However, this is difficult to
achieve on the computational scale of a workstation, so
we have turned to high performance computing (HPC)

clusters and volunteer computing for large-scale
computational resources.

The majority of applications on the Department of
Defense HPC clusters focus on solving partial differential
equations (Post, 2009). These tend to be lean, fast models
with little noise. While we lack specific data regarding
typical job sizes and durations, HPC maintenance is
regularly scheduled at two-week intervals, so it seems
reasonable to assume that most jobs fit within this
window.

In contrast to HPC applications, volunteer computing
projects tend to involve singularly specific, highly
parallelizable tasks crunching vast quantities of data over
time spans measured in months and years, such as
SETI@home’s analysis of interstellar radio signals and
Folding@home’s studies of protein folding. Both of these
examples run on a common software framework called
the Berkeley Open Infrastructure for Network Computing
(BOINC), which enables volunteers to donate idle time
from their computational resources to projects of their
choice. The volunteer computing application developed
by my colleagues is called MindModeling@Home, and it
too runs on the BOINC infrastructure (Harris, Gluck,
Mielke & Moore, 2009). Projects that work well with

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

154

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Cognitive Model Exploration and Optimization: A New Challenge for
Computational Science

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lockheed Martin Systems Management,Air Force Research
Laboratory,6030 South Kent Street,Mesa,AZ,85212-6061

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADA538937. Presented at the Proceedings of the Conference on Behavior Representation in
Modeling and Simulation (19th), held in Charleston, South Carolina, 21 - 24 March 2010. Sponsored in
part by AFRL, ARI, ARL, DARPA, & ONR. U.S. Government or Federal Rights License

14. ABSTRACT
Parameter space exploration is a common problem tackled on large-scale computational resources. The
most common technique, a full combinatorial mesh, is robust but scales poorly to the computational
demands of complex models with higher dimensional spaces such as those found in the cognitive and
behavioral modeling community. To curtail the computational requirements, I have implemented two
parallelized intelligent search and exploration algorithms, both of which are discussed and compared in
this paper.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

BOINC tend to be long lasting and can tolerate latencies
measured in days, which happen quite commonly when
volunteer resources are interrupted or retasked.

Cognitive models fit somewhere between these two
extremes. Our models are computationally expensive and
produce stochastic results, quite unlike the partial
differential equations typically solved on HPC clusters.
And unlike most of the BOINC projects, we strive to
analyze many different models with vastly differing
performance characteristics within a calendar year. Our
unique requirements present new methodological
challenges for both HPC and volunteer resources. This
paper describes some of the methodologies we have
explored, the trade space among them, and my latest
research efforts to apply HPC and volunteer resources to
characterize and search parameter spaces.

2. Meshing

In its simplest form, “meshing” involves the construction
of an n-dimensional grid by iterating through each
parameter range by a fixed interval, and capturing the
combinatorics to be used as the basis of model runs. The
resulting simple orthogonal grid seems to suffice for most
of our cognitive models.

Once the mesh is defined, portions can be distributed
amongst computational nodes and executed completely
independently. Meshing has been widely used for many
years (Chen & Taylor, 1998) and it lends itself well to
both HPC and volunteer resources. The complete
independence among computational nodes affords the
ultimate in “embarrassingly parallel”—a term commonly
used to describe computational tasks that can be
efficiently executed with little or no serial operations.
Parallelizability is the key to realizing the full potential of
large-scale computational resources.

Full combinatorial meshes have other advantages, as well.
For example, there is little software overhead in
computing these meshes (at least for our relatively simple
requirements) and the corresponding job files for the HPC
schedulers. For volunteer resources, my colleagues have
developed a web interface specifically for this purpose
with plans to make it available as a community resource
(Harris et al, 2009).

Combinatorial meshes are also flexible. No assumptions
are made about the structure or even the continuity of the
parameter space. The data can be stored in any format
convenient for the modeler to analyze. Analysis is
straightforward, and the results can be visualized or
mined indefinitely, within the limits of precision defined
by the original mesh.

Another point to consider about full combinatorial meshes
is that counting the results files quickly reveals the
success of the jobs; one result should be present for every
parameter combination. While we might shrug off a
failure on our desktop as a 1 in a million fluke, when
running models millions of times this seemingly
innocuous failure rate becomes noticeable, and quick
methods to detect and recover are desirable—in this case
the modeler can simply rerun the specific mesh nodes that
failed to produce results files.

How do full combinatorial meshes fare with cognitive
models? In one research effort, we have developed a
model that performs a Digit Symbol Substitution Task
(DSST) (Moore, Gunzelmann & Gluck, 2008). This is a
simple task where the model is presented with 9 digit /
symbol pairs, and when prompted with a symbol the
model responds with the appropriate digit. This fairly
typical cognitive model has 7 relevant quantitative
parameters and due to stochasticity must be resampled at
least 10 times to establish a reliable measure of central
tendency. With an average run time of 2 minutes, a mesh
with 10 increments per variable would require 271 days to
compute if run continuously on 512 cores. A
computational challenge of this magnitude would
overwhelm any computational resource for quite some
time, and as mentioned previously there is some desire to
analyze more than one model per calendar year.

There are primarily two issues that drive the
computational demands of the DSST. First, the 7
parameters exhibit the “curse of dimensionality”—a
phrase used to describe the exponential requirements of
additional parameters in a space (Bellman, 1961). After
examining the parameter space and understanding the
interrelationships, dimensionality can often be reduced,
but not until after an initial analysis is completed.

The second primary issue contributing to the
computational requirements is the 2-minute run time
required for each node in the parameter space. The DSST
is a learning model—its behavior changes across sessions
as it gains knowledge and experience. Therefore, to
properly compare learning characteristics with human
subjects, the entire learning curve must be constructed at
each parameter combination across all sessions.
Considering that, in this case, the model is performing the
task across 32 sessions (96 simulative minutes), 2 minute
run times seem quite reasonable.

Recognizing that large-scale computational resources can
only take us so far, we have turned our attention to
intelligent exploration and search strategies that run on
both HPC and volunteer resources. Our interests are
specifically focused on approaches that allow searching a

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

155

parameter space for optimal values, as well as
characterizing the overall space in general.

3. Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is an intelligent search
strategy that dynamically divides the overall search space
into subcubes of varying size, each of which is capable of
making predictions about measures in its local area of
space to a predefined degree of accuracy (Berger &
Oliger, 1984).

My parallelized implementation of AMR is called Quick,
and it consists of about 11,000 lines of C++ code. The
code has been ported to several HPC clusters, as well as
our BOINC-based MindModeling volunteer computing
system.

Implementing AMR—or any intelligent algorithm, for
that matter—on large-scale computational resources
requires a serious engineering investment. The software
needs to be robust enough to recover from faults
throughout the system—including models under
evaluation-- and it needs to be reliable enough to run for
hundreds or thousands of hours without memory leaks,
crashing, etc.

To initiate an AMR using Quick, the modeler begins by
defining the independent variables, their ranges, and the
increment for each. The increment is identical to the
increment used when constructing a full combinatorial
mesh—although hypercubes produced by an AMR may
span large portions of space, their boundaries are always
constrained to the implicit grid lines defined by the
increment. The hypercubes never overlap, and the sum of
their volumes equals that of the parameter space overall.

The user also specifies the dependent measures that the
model will produce, as well as a threshold value for each.
The threshold is an important consideration, because
ultimately it will constrain how accurate the results will
be.

Once configured, the procedure to execute Quick varies
between HPC and MindModeling. Running software on
HPC resources is accomplished through “job”
submissions. A job is defined through a simple shell
script that describes the requested computational
resources and the software to run. Jobs are submitted to a
dedicated scheduler that executes the software when the
requested resources become available. Quick begins with
a single job that requests a single computer. As the AMR
progresses, Quick will automatically schedule more jobs
to run in parallel as aggressively as possible.

On MindModeling things behave quite differently. In this
case, Quick is automatically executed on the servers at
periodic intervals to determine which points in the
parameter space need to be computed for the AMR. As
volunteers request work, they are provided with these
points to compute, and as they return results and the AMR
progresses new points will be generated by Quick. Thus,
parallelization is achieved at the level of sample
acquisition.

Regardless of the computational context, the AMR
methodology is the same. Quick begins by treating the
entire parameter space as a single large single hypercube.
The process begins by executing the model with
parameter values at each of the corner points. AMR
assumes that measurements are accurate, so we typically
resample the model a fixed number of times and collapse
across the dependent measures to remove stochasticity.
In any n dimensional space, there will be 2n corners to
sample.

In addition to the corner points, the center of the cube is
measured as well. (As with all nodes considered in the
space, the center is constrained to the specified grid, so it
may not reflect the precise mathematical center.) In
addition to measuring the center, Quick will also make a
mathematical prediction of the center, assuming that the
model’s behavior changes smoothly across the parameter
space, yet accounting for twisting that can occur. If the
difference between the measured value and the predicted
value is within the specified threshold for each dependent
measure, then the hypercube is considered smooth and
predictable, and the process is complete. However, if any
of the dependent measures exceed the threshold, the
hypercube is divided into 2n subcubes about the center
point, and each subcube is analyzed using the same
process just described.

When hypercubes split into subcubes, each subcube can
be treated as a parameter space in its own right, albeit
smaller than the true overall space. This is the key to
parallelizing AMR on HPC resources, as the analysis of
each subcube can be scheduled as an independent HPC
job. Aside from the shape of the parameter space, these
new jobs are identical to the original that started the
analysis.

AMR can result in substantial computational savings, yet
the quantitative quality of the results typically remains
high (Best et al, 2009). The quality of the results is
consistent across the space, too, so unmeasured points can
be interpolated and the resulting grid can be mined just as
a full combinatorial mesh. Further, because the space is
mathematically defined, off-grid interpolation can also be
calculated if desired. There is also something to be said

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

156

for the reduction in data that needs to be transferred to the
workstation for analysis.

Nevertheless, AMR does have its drawbacks. First, the
computational savings with AMR are unpredictable. This
is also consistent with the Best et al (2009) work, which
showed that AMR efficiency was heavily influence by
threshold and implementation factors that can be difficult
to predict a-priori. Furthermore, the structure of the
space, (which in turn depends on the parameters and their
relationships) and the number of dependent measures can
also heavily influence AMR efficiency. In my experience
with our models, it is not uncommon for an AMR to
compute nearly all the nodes in the space, resulting in
little savings.

Recall that AMR must evaluate the corners and center of
each hypercube before it can move forward. In a
volunteer environment such as MindModeling, this can be
problematic because of the large latencies. At any
moment, a volunteer might turn off their computer, or use
it for something else, and processing is stalled until an
explicit timeout is reached, which is usually at least a day.
So while volunteer networks provide huge computational
power, they are a poor match for the methodological
requirements of AMR.

AMR on HPC suffers for different reasons, but with
similar effects. In this case, parallelization is not usually
the problem, but each parallel analysis requires a new
HPC job to be scheduled. HPC schedulers vary in
reliability and performance—which is in itself
problematic for AMR—but they all share a first-in-first-
out paradigm, so new jobs must wait for resources to be
made available from jobs scheduled prior. A simple 3-
dimensional parameter space with 8 divisions per
parameter could potentially result in millions of job
submissions, each with its own wait time in the job queue.

To test how many submissions are actually made, and
their impact on the overall wall clock time, I ran six
adaptive meshes on the Jaws high performance computing
cluster in Maui using a model of the Psychomotor
Vigilance Task (PVT). The PVT is a simple model that
simulates a button press when a visual stimulus is
presented at random time intervals (Gunzelmann, Gross,
Gluck & Dinges, 2009). Two variants of this model were
tested, and each was run using three different values for
the threshold that controls the likelihood of searching
deeper into the parameter space. All six meshes explored
the same three-parameter space.

The mean number of HPC jobs submitted was 577. The
average run time for each job was 2 minutes, and the
average wait time in the scheduler queue was 5.9 minutes.
One must be cautious when interpreting these results due

to the small sample size and large variation in HPC usage,
but in this case the mean wait time was nearly 3x longer
than the mean run time per job.

Although AMR is more computationally efficient than a
full combinatorial mesh on large-scale resources, it can be
slower in terms of wall clock time. If you recall, our
original motivation for combining intelligent search and
exploration with large-scale computational resources was
to improve analytical capacity with cognitive models, yet
AMR does not consistently deliver.

Despite its shortcomings, AMR has clearly demonstrated
that combining intelligent search with HPC and volunteer
resources is indeed possible. My most recent research re-
imagines optimized search specifically for the context of
cognitive models on parallel computational resources.

4. Regression Trees

Recognizing that parallelization is the key to fully
leveraging HPC and volunteer resources, I have
developed a flexible stochastic search methodology that
allows massive parallelization with virtually no
interdependencies. Furthermore, recognizing the necessity
for qualitatively understanding the parameter space, I
have also developed accompanying visualization software
that operates in real time as the space is constructed. The
visualization software is called Hurricane, while the
intelligent search software is called Cell.

Hurricane and Cell are written in Objective C, and at
5300 lines combined they are about half the size of Quick,
testifying to their relative simplicity. They were
developed on Mac OS X, and Cell specifically has been
ported to Linux to support HPC and MindModeling
integration. At this time Cell has been successfully ported
and tested on four different HPC clusters, with
MindModeling integration underway.

As was the case with Quick, Cell and Hurricane begin
with a user-specified configuration including independent
variables, their ranges and increment, and the dependent
measures. In contrast to the AMR configuration for
Quick, no threshold is required.

Like all software run on the HPC, Cell is executed
through a job submission. However, because Cell is
immediately parallelizable any number of job submissions
can be made during startup. Typically I limit myself to
128 jobs, mostly to avoid complaints from other HPC
users.

On MindModeling, a single instance of Cell runs on the
server for the duration of a model run. This “listener”
process analyzes incoming data, and upon request,

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

157

generates lists of points that are distributed to volunteer
resources as they request work. Like Quick, Cell
achieves parallelization on MindModeling by distributing
model runs to volunteer resources.

Cell can analyze the parameter space in either of two
ways: exploration or searching. Both approaches divide
the space into a set of hypercubes that are geometrically
analogous to AMR. However, rather than sampling just
corners and the center, Cell samples stochastically within
the hypercube space and calculates the best fitting
hyperplane for each dependent measure—an analytical
approach sometimes referred to as a regression tree
(Alexander & Grimshaw, 1996).

Regardless of whether Cell is searching or exploring, it
tries to maintain a consistent sample density among the
hypercubes, regardless of size. This means that areas of
the space with higher sampling will have greater numbers
of hypercube divisions. The minimum number of
samples targeted for each hypercube is based on the work
of Knofcyznski and Mundfrom (2008), which suggests a
linear relationship between the number of samples
required to make a good regression prediction and the
dimensionality of the space. It is not until a hypercube
contains 2x this amount does it split along its longest
dimension. Within the confines of a single hypercube
sampling is uniform, so the split should roughly divide the
samples equally between both subcubes.

The key distinction between Cell’s two analytical
approaches lies in the way they construct their sampling
distribution. The exploration approach performs a
characterization of the space—in this case the sampling
distribution is positively correlated with the residual
variation in each hypercube. Unexplained variation is
presumably the result of noise or a poor regression fit, and
in either case it is prudent to sample more, and potentially
to subdivide more, to resolve the ambiguity. In this
mode, the exploration process has no definitive end and
runs as long as the modeler desires.

In truth, I rarely use exploration mode because our work
typically involves parameter optimization as well as
characterization, and search mode provides both. In this
case, the user supplies additional configuration
information consisting of dependent measure “target
goals” to search for. In terms of cognitive modeling, this
typically takes the form of human data. When supplied,
the sampling distribution is skewed towards hypercubes
with the lowest deviation from the human data (or
whatever target goals are supplied), and so the space
winds up being more intricately constructed in those
areas. The search is considered complete when the best
fitting hypercube cannot divide any more based on the
constraining grid.

With data in hand (or even while it is being obtained in
the case of running on local resources), Hurricane can be
used to visualize the results, as is shown in Figure 1.
Hurricane conducts the same analysis that Cell does, and
produces the regression tree in the form of a 3D graph.
Any two independent measures can be selected for the x
and z-axis, and any dependent measure can be selected for
the y-axis (vertical). The remaining independent
measures can be manipulated in real time via sliders,
which provides a convenient mechanism to grasp an
otherwise esoteric hyperdimensional space. Hurricane
can also scan the space for optimal parameter values or
make predictions, which can then be imported into more
generalized analytical tools like R or SPSS.

Figure 1. Hurricane visualization of a PVT parameter
space. The vertical axis represents RMSD between human
measures and the model, while the other two axes
represent independent variables. A third independent
variable can be manipulated with the slider. Best fitting
parameter values are located within the trench area, which
received more samples and therefore is more finely
subdivided.

Searches conducted with Cell provide large computational
advantages over AMR and full combinatorial meshes.
This is primarily because vast sections of the space—
those areas that are distant from target areas of interest—
are only lightly sampled and mostly ignored once deemed
suboptimal. As an example, I ran the PVT model through
a full combinatorial mesh, an AMR with Quick, and a
regression tree analysis with Cell. Identical grid slicing
was used for all three, and they were all run on the same
Mana HPC cluster in Maui.

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

158

Figure 2 shows the number of model runs required to
complete an analysis of the parameter space for each
methodology. In this example, the AMR—although it
was configured with a liberal 5% threshold—wound up
sampling most of the space anyway, while the Cell
required two orders of magnitude fewer model runs.

Figure 2. Comparison of computational requirements for
each of the three methodologies discussed.

The amount of time required to complete the analyses is
shown in Figure 3. Note that the AMR took 4.2 times
longer than the full combinatorial mesh, which is almost
exactly what would be expected if queue wait times were
3x the run time as discussed above. Because Cell
parallelizes immediately upon startup and does not auto-
schedule new jobs like Quick, most of the scheduling
queue delays are avoided. For more complex searches
that fail to complete within the scheduled amount time, I
can simply reschedule more jobs, and each Cell instance
will read the samples acquired previously from disk, and
pick up where the older Cell instances left off.

Figure 3. Comparison of wall clock time required to
analyze the PVT parameter space using the three
methodologies.

Speed and efficiency are important, but they are only
useful if the resulting analysis is viable. Figure 4
compares the optimized parameter predictions from each
of the three methodologies. To produce this table, I reran

the model at the predicted optimal parameter values and
computed an RMSD against the human data for each
methodology. The model was run 100x to reduce noise—
the same amount used during the AMR and full
combinatorial runs. As expected, the full combinatorial
mesh produced the best results. It was surprising to see
that the regression tree methodology edged out AMR, but
this is likely caused by variation in the model’s
performance.

Figure 4. RMSD between best fitting parameter
predictions and human data.

Many of the issues challenging parallelized AMR
disappear in the context of regression tree exploration and
searching. This is because Cell does not base decisions
upon the outcome of specific, accurate, grid-constrained
samples. Rather, the decisions are based on statistical
analysis of a set of distributed, stochastic samples. As a
result, any number of Cell instances can be started at once
and run in parallel, each making its own decision about
how to divide the space and where to sample.

Although the integration remains a work in progress, I
expect that Cell will work well with volunteer resources.
In this case AMR was stalled waiting for specific points
to complete, but Cell, with its semi-random sampling
strategy, can always generate work for volunteers.
However, we will need to be careful to limit the number
of outstanding points being computed at any given time.
The end result of too many outstanding samples could be
hundreds or thousands more samples in a hypercube than
is really necessary to make a search decision. The extra
data would still be useful for visualization purposes, but it
would reduce the efficiency of searching.

In my ongoing efforts to combine intelligent search and
exploration with large-scale computational resources,
Hurricane and Cell represent best results to date.
Nevertheless, they present their own new challenges. For
example, the confidence of predictions based on
discontinuous regression planes is inconsistent, and
highly dependent upon the distance from the center of the
hypercube. Predictions across the boundary of two

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

159

discontinuous hyperplanes can be disturbingly disparate
compared to neighboring predictions. This not only
makes visualization less appealing, but data mining
outside of specified search goals can be problematic.

From an implementation perspective, Cell is more
computationally intensive than AMR and full
combinatorial meshes. Every incoming sample requires a
search to determine its encompassing hypercube, and the
introduction of new data into the hypercube will require
the calculation of new regressions. To maintain pace with
the incoming data stream, results must be stored in RAM
rather than disk-based storage, which limits scalability.
The number of samples that can be maintained in a fixed
amount of RAM depends upon the amount of memory
required to store a sample, which includes values for the
independent measures, dependent measures, and search
targets specified.

Even with in-memory data management, however, the
number of regressions required can still be
computationally challenging. For example, the DSST
model mentioned earlier captures 9 measures across 32
sessions, amounting to 218 total independent measures,
each maintaining its own regression tree. Hurricane
requires about 5 hours to read in the data from this model
and reconstruct the regression trees for visualization,
which seems excessive, to say the least.

Despite these limitations, the regression trees seem to be
another step in the right direction. Using Cell, our
cognitive models scale well on HPC resources from both
computational and wall clock time perspectives. Some of
our faster cognitive models, in fact, can now be analyzed
in a few hours on local resources, which avails large-
scale computational resources for even more complex
models. Additionally, Hurricane’s multidimensional
visualization capability has become an indispensible part
of my normal workflow.

4. Discussion

In a broad sense, the engineering problem being
addressed is one of computational performance and
efficiency. Large-scale computational resources take us
part of the way, and the remaining effort is incumbent
upon us, as the resource users.

In the world of software engineering, there is a basic rule
to optimization: focus on the innermost loop. In the
context of this discussion, we have a parameter
exploration / search methodology exercising a cognitive
model, and it is the model itself that constitutes the bulk
of processing in the innermost loop.

The model and its implementation are the embodiment of
a theory, however, and this can severely constrain
optimization options. This is certainly the case for my
colleagues and I, where our models are based on a
publicly available cognitive architecture (ACT-R;
Anderson, 2007) that is shared among a relatively large
scientific community. In our case, we routinely share
models to combine and test different cognitive
moderators, and it is important to maintain a consistent
architecture across the community.

Therefore, we optimize our inner loop not by changing
code, but by reducing the number of model runs as much
as possible. AMR does this well and is used successfully
in some contexts, but it appears, however, that the full
utility of AMR does not necessarily transfer across
domains and contexts. As cognitive and behavioral
modelers begin to leverage large-scale computational
resources, we must also develop suitable parallel search
and exploration algorithms for our models.

This paper described our recent efforts using regression
tree predictions to drive sampling distributions, and
ultimately hypercube division. Like AMR, the technique
reduces computational demands through a reduction in
model runs, but the nature of the approach seems to be
more agreeable to parallelization.

Regression trees, however, are not the only option. The
dynamics of Cell are driven by two governing principles:
1) Sample more in areas of interest and 2) subdivide more
in areas of higher density. The regression trees are used
to determine the areas of interest, but other predictive
analytical techniques can be substituted without
compromising the fundamental approach. Multivariate
adaptive regression splines (MARS) are one interesting
possibility (Friedman, 1991).

However, models like the DSST have demonstrated that
the computational demands of the analytical technique are
becoming a serious consideration. While I predict that
MARS will be more efficient than regression trees in
terms of reducing the required number of model runs, I
also expect that the analytical processing requirements
will be significantly more demanding. It seems a trade
space is becoming apparent between the computational
demands of the model versus the computational demands
of the search / exploration algorithm. For us this is not
necessarily a bad trade space, because it is much less
problematic to optimize a methodology as opposed to a
theory, and there remain many opportunities to do so.

5. Acknowledgements

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

160

The views expressed in this paper are those of the authors
and do not reflect the official policy or position of the
Department of Defense, the U.S. Government, or
Lockheed Martin Corporation. This research was
sponsored by grants 07HE01COR and 10RH04COR from
the Air Force Office of Scientific Research.

I would like to thank Kevin Gluck and Glenn
Gunzelmann for reviews of earlier drafts of this paper, as
well as the Performance and Learning Models team and
Adaptive Cognitive Systems for their influences and
indulgence in supporting this work.

6. References

Alexander, W. P., & Grimshaw, S. D. (1996). Treed

Regression. Journal of Computational and
Graphical Statistics. 5, 156-175.

Anderson, J. R. (2007). How can the human mind
occur in the physical universe? Oxford
University Press, Oxford, UK.

Bellman, R. E. (1961). Adaptive Control Processes.
Princeton: Princeton University Press.

Berger, M., & Oliger, J. (1984). Adaptive mesh
refinement for hyperbolic partial differential
equations. Journal of Computational Physics,
53, 484-512.

Best, B. J., Gerhart, N., Furjanic, C., Fincham, J.,
Gluck, K. A., Gunzelmann, G., & Krusmark,
M. (2009). Adaptive mesh refinement for
efficient exploration of cognitive architectures
and cognitive models. In Proceedings of the
Ninth International Conference on Cognitive
Modeling, Manchester, UK.

Chen J., Taylor V. (1998). Mesh Partitioning for
Distributed Systems. In Seventh IEEE
International Symposium on High Performance
Distributed Computing, 292-300.

Friedman, J. (1991). Multivariate adaptive
regression splines. The Annals of Statistics, 19,
1-141.

Gluck, K. A., Stanley, C. T., Moore, L. R., Reitter,
D., Halbrügge, M. (2010). Exploration for
Understanding in Model Comparisons. Under
review, Journal of Artificial General
Intelligence.

Gunzelmann, G., Gross, J. B., Gluck, K. A., &
Dinges, D. F. (2009). Sleep deprivation and
sustained attention performance: Integrating
mathematical and cognitive modeling.
Cognitive Science, 33(5), 880-910.

 Harris, J., Gluck, K. A., Mielke, T., & Moore, L. R.
(2009). MindModeling@Home … and
Anywhere Else You Have Idle Processors
[Abstract]. In A. Howes, D. Peebles, & R.
Cooper (Eds.) Proceedings of the Ninth
International Conference on Cognitive
Modeling. Manchester, United Kingdom:
University of Manchester.

Knofcyznski, G. T., & Mundfrom, D. (2008).
Sample sizes when using multiple linear
regression for prediction. Educational and
Psychological Measurement. 68, 431-442.

Moore, L. R., Gunzelmann, G., & Gluck, K. A.
(2008). Evaluating mechanisms of fatigue using
a digit symbol substitution task [Abstract]. In
N. Taatgen, H. van Rijn, L. Schomaker, & J.
Nerbonne (Eds.), Proceedings of the Thirty-
First Annual Meeting of the Cognitive Science
Society, Austin, TX: Cognitive Science Society.

Post, D. (2009). The Promise and Challenges for
Next Generation of Computers [PowerPoint
slides]. Retrieved from
http://www.cc.gatech.edu/~bader/AFRL-GT-
Workshop2009/AFRL-GT-Post.pdf

Author Biography

L RICHARD MOORE JR is a Research Engineer with
Lockheed Martin Systems Management at the Air Force
Research Laboratory, Warfighter Readiness Research
Division in Mesa AZ. He completed his B.S.E. in
Electrical Engineering in 1992, with an M.S. in Applied
Psychology in 2008, both from Arizona State University.

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

161

